Javascript must be enabled in your browser to use this page.
Please enable Javascript under your Tools menu in your browser.
Once javascript is enabled Click here to go back to �нтеллектуальная Кобринщина

Практическое значение алгебры логики

Двоичный полусумматор способен осуществлять операцию двоичного сложения двух одноразрядных двоичных чисел (т.е. выполнять правила двоичной арифметики):

0 + 0 = 0; 0 + 1 = 1; 1 + 0 = 1; 1 + 1 = 0.

При этом полусумматор выделяет бит переноса. Однако схема полусумматора не содержит третьего входа, на который можно подавать сигнал переноса от предыдущего разряда суммы двоичных чисел. Поэтому полусумматор используется только в младшем разряде логической схемы суммирования многоразрядных двоичных чисел, где не может быть сигнала переноса от предыдущего двоичного разряда. Полный двоичный сумматор складывает два многоразрядных двоичных числа с учетом сигналов переноса от сложения в предыдущих двоичных разрядах.

Соединяя двоичные сумматоры в каскад, можно получить логическую схему сумматора для двоичных чисел с любым числом разрядов. С некоторыми изменениями эти логические схемы применяются для вычитания, умножения и деления двоичных чисел. С их помощью построены арифметические устройства современных компьютеров.

Сумматоры и полусумматоры являются однотактными логическими схемами. Значения их выходов однозначно определяется значениями их входов. Фактор времени в них отсутствует. Наряду с ними существуют многотактные логические схемы, в которых значения их выходов определяются не только значениями их входов, но и их состоянием в предыдущем такте. Фактор времени и определяется такими тактами. К таким логическим схемам относятся схемы памяти (триггеры). Они строятся с помощью обратной связи с выхода на вход.

В триггерах с помощью обратной связи образуется замкнутая цепь с выхода на вход для запоминания входного сигнала. Эта цепь сохраняется после снятия входного сигнала неограниченное время, вплоть до появления сигнала стирания.

Такая схема памяти имеет еще и другое название – триггер с раздельными входами. В такой схеме есть вход для запоминания (S) и стирания (R). Широко используется в вычислительной технике и триггер со счетным входом. Он имеет только один вход и один выход. Такая схема осуществляет деление на 2, т.е. состояние ее выхода изменяется только после подачи подряд двух входных импульсов. Соединяя триггеры со счетным выходом в последовательный каскад, можно осуществлять деление на 2, 4, 8, 16, 32, 64 и т.д.

Схема оперативной памяти играет важную роль при построении систем управления машинами повышенной опасности, такими, например, как производственные прессы. Чтобы обезопасить руки оператора, такие машины строят с системами двуручного управления. Подобные системы заставляют оператора держать обе руки на кнопках управления во время каждого рабочего цикла машины. Это исключает попадание рук в опасную зону, где происходит прессование детали.

Входные и выходные сигналы электромагнитных реле, подобно высказываниям в булевой алгебре, также принимают только два значения. Когда обмотка обесточена, входной сигнал равен нулю, а если по обмотке протекает ток, входной сигнал равен единице. Когда контакт реле разомкнут, выходной сигнал равен нулю, а если контакт замкнут, выходной сигнал равен единице.

Именно это сходство между высказываниями в булевой алгебре и поведением электромагнитных реле заметил физик П. Эренфест. Еще в 1910 г. он предложил использовать булеву алгебру для описания работы релейных схем в телефонных системах. По другой версии идея использования булевой алгебры для описания электрических переключательных схем принадлежит Ч. Пирсу. В 1936 г. основатель современной теории информации К. Шеннон объединил двоичную систему счисления, математическую логику и электрические цепи.

Связи между электромагнитными реле в схемах удобно обозначать с помощью логических операций НЕ, И, ИЛИ, повторения (ДА) и т.д. Например, последовательное соединение контактов реле реализует логическую операцию И, а параллельное соединение этих контактов – логическую операцию ИЛИ. Аналогично выполняются операции И, ИЛИ, НЕ в электронных схемах, где роль реле, замыкающих и размыкающих электрические цепи, выполняют бесконтактные полупроводниковые элементы – транзисторы, созданные в 1947-1948 гг. Дж. Бардином, У. Шокли и У. Браттейном.

В современных компьютерах микроскопические транзисторы в кристалле интегральной схемы сгруппированы в системы вентилей, выполняющих логические операции над двоичными числами. Так, с их помощью построены описанные выше двоичные сумматоры, позволяющие складывать многоразрядные двоичные числа, производить вычитание, умножение, деление и сравнение чисел между собой. Логические вентили, действуя по определенным правилам, управляют движением данных и выполнением инструкций в компьютере.